LIQUID RING PUMP
MV and MVP Design

INSTALLATION, OPERATION
AND
MAINTENANCE MANUAL

Graham Corporation
20 Florence Avenue
Batavia, New York 14020
(716) 343-2216, Fax (716) 343-1097
e-mail: equipment@graham-mfg.com

IOM-MV-799
Table of Contents

Section 1 - General Information
- 1.1 Introduction .. 4
- 1.2 General Description and Principle of Operation .. 5
- 1.3 Description of Pump Model Codes .. 6

Section 2 - Installation Instructions .. 7
- 2.1 Handling .. 7
- 2.2 Preservation ... 7
- 2.3 Mounting .. 7
- 2.4 Installation .. 7
- 2.5 Coupling Alignment .. 8
- 2.6 Service Liquid Piping Arrangements .. 9
 - A) Typical Installation of Once Through with No Recovery .. 10
 - B) Typical Installation of Closed Loop with Total Recovery .. 11
 - C) Draining Before Start-Up ... 12
- 2.7 Shaft Seal Coolant ... 12
- 2.8 Piping Requirements .. 12
 - A) Suction and Discharge Piping .. 12
 - B) Service Liquid Piping .. 12
- 2.9 Electrical Requirements .. 13

Section 3 - Operating Instructions ... 14
- 3.1 Start-up Procedures .. 14
- 3.2 Service Liquid Requirements .. 14
 - A) Flow Rates ... 14
 - B) Flow Control .. 15
 - C) Hard Water ... 15
- 3.3 Cavitation ... 15
- 3.4 Shut-Down Procedures .. 15

Section 4 - Accessory Items .. 16
- 4.1 Accessories ... 16

Section 5 - Maintenance .. 18
- 5.1 Performance ... 18
- 5.2 MV and MVP Pump Estimated Weights (lbs.) ... 18
- 5.3 Shaft Bearings .. 18
- 5.4 Mechanical Seals .. 18
- 5.5 Storage ... 19
- 5.6 Removal from storage ... 19
- 5.7 Troubleshooting Chart .. 20
Table of Contents

Section 6-Disassembly And Reassembly Procedures .. 21
 6.1 General.. 21
 6.2 Impeller End Clearances... 21
 A) Gasketed Pumps.. 22
 B) Non-Gasketed Pumps... 22
 6.3 Tie Rod Torque Values... 22
 6.4 Bearing Data... 23

Section 7-Warranty ... 24

Appendices

Appendix A - MSDS Form - Preservative ... 25
Appendix B - Return Material Authorization (RMA) Form ... 29
Section 1 - General Information

1.1 Introduction

This manual will provide assistance in the set-up, operation, and maintenance of your Graham Liquid Ring Pump. Please read this manual completely prior to operating your Liquid Ring Pump. If you need to contact the Pump Service department for assistance, please have available the pump serial number and model number. The Pump Service department may be reached by contacting Graham Corporation in Batavia, NY by phone (716) 343-2216, Fax (716) 343-1097, or e-mail at equipment@graham-mfg.com.

Graham has an extensive stock of spare parts and replacement pumps. Stocked parts and pumps can be shipped from our warehouse in Batavia, NY, by a carrier of your choice.

For your convenience, use our toll free number (1-800-828-8150) only when ordering spare parts and replacement pumps. Please have the model number, serial number and part number of the items required when placing an order. Normal business hours are 8:00 a.m. to 5:00 p.m. (E.S.T.), Monday through Friday.

Factory rebuilding service is available for pumps returned to Batavia. When a pump is returned to the factory for repairs, please drain and flush the pump and include a Material Safety Data Sheet (MSDS) for the process in which the pump was used. A Return Material Authorization (RMA) Number, issued by Graham, is required before returning a pump. A sample form is included at the back of this manual to show what type of information is required to obtain an RMA Number. Field Service Technicians are also available for travel to the jobsite for troubleshooting and repair or rebuilding of pumps.

This document and the information contained herein are the property of Graham Corporation and must not be copied, in whole or in part, nor used for manufacture or otherwise disclosed without the prior written consent of the company. Information contained herein may, from time to time, be revised and/or updated. Copyright Graham Corporation 1999
1.2 General Description and Principle of Operation

Graham Vacuum Pumps and Compressors are of the liquid ring type. The MV and MVP pump designs are single stage and available in a wide range of sizes and materials. These are listed in the Graham Sales Bulletins.

For the MV design, the pump is mounted directly to the motor with the motor being the complete support. It is commonly called a close-coupled arrangement. The MVP design is called a pedestal type and permits the pump and motor to be separately supported and mounted on a baseplate.

The major component of the liquid ring pump is a multi-bladed rotating assembly positioned eccentrically in a cylindrical casing. (See Figure 1) This assembly is driven by an external source, normally an electric motor. Service liquid (usually water) is introduced into the pump. As the impeller rotates, centrifugal force creates a liquid ring which is concentric to the casing. At the inlet, the area between the impeller blades (buckets) increase in size, drawing gas in. As the impeller continues to rotate toward the discharge, the impeller bucket area decreases in size, compressing the gas. This gas, along with the liquid from the pump, is discharged through the outlet nozzle. The service liquid is separated from the gas and cooled for reuse in the pump or sent to a drain. In addition to being the compressing medium, the liquid ring performs two other important functions:

1) It absorbs the heat generated by compression, friction, and condensation of the incoming vapor.
2) It absorbs and washes out any process contaminants entrained in the gas.

Figure 1
A continuous supply of service liquid is necessary to limit the temperature rise in the pump caused by the heat of compression, friction, and condensation. Any excessive rise in temperature will have a detrimental effect on performance, reducing the capacity and degree of vacuum attainable. Installation schematics for the supply of the service liquid and for the separation of the gas and liquid discharged from the pump are shown in Section 2.

Service liquid quantities are a function of the particular model and the intended application. Check the data sheet for your specific pump model or see Table 1 of Section 3 which lists typical service liquid requirements.

The normal operating range of the MV or MVP design when using water at 59°F (15 °C) for the service liquid is from atmosphere down to 30 mmHgA.

The standard materials of construction are suitable for handling air and other non-corrosive gases, while using water as the service liquid. Other materials can be supplied for special applications.

1.3 Description of Pump Model Codes

Each pump is designated by a model code which describes the materials of construction, size, type of shaft seals, and any special features. An example of a typical pump is shown below. Contact Graham for a complete listing of the codes used to describe the pump.
Section 2 - Installation Instructions

2.1 Handling

Carefully unpack the pump. MV pumps may be lifted with a sling placed under the pump- motor assembly. Since the MVP pump is normally baseplate mounted, lift by the baseplate only. Do not attach slings nor hooks to the motor or the pump as this can cause misalignment. Do not attempt to run the pump until the installation work is complete.

CAUTION: DO NOT RUN THE PUMP WITHOUT SERVICE LIQUID AND SHAFT SEAL COOLANT.

2.2 Preservation

Cast iron pumps are protected internally with a preservative solution applied at the factory before shipping. The solution should be flushed from the pump prior to use. An MSDS form is included in the back of this manual.

The preservative solution is petroleum based and must be disposed of in accordance with all Local, State, and Federal regulations.

2.3 Mounting

Before operation, the pump package should be carefully set, leveled, and securely bolted in place. It is recommended that shims and grout be used as necessary under all structural members of the base.

Baseplates supplied with a pump and drive motor mounted at the factory should be leveled, shimmed as required, and firmly anchored.

2.4 Installation

All piping to the pump should be adequately supported to eliminate any stress at the pump connections. All piping joints should be tested for leaks prior to start-up. A temporary start-up strainer in the process inlet piping may be used to keep large contaminates from entering the pump at start-up.

The location of the installation or the storage of the pump should be in an area that will not subject the pump to freezing.

Verify the pump’s rotation direction by checking the arrow on the shaft end casing. Refer to paragraph 2.9 concerning the electrical requirements.
2.5 Coupling Alignment - MVP design only

CAUTION: TO PREVENT PERSONAL INJURY, DO NOT OPERATE THE PUMP WITHOUT PROPERLY GUARDING THE DRIVE COUPLING(S).

Pumps supplied from the factory packaged with a motor have had the shafts aligned prior to shipment. This ensures that alignment can be done in the field. It is required that the shaft alignment be rechecked after mounting on a level foundation and prior to start-up.

For smoother operation and longer life of the coupled equipment, the following maximum misalignment tolerances are recommended:

The maximum allowable parallel shaft misalignment for standard couplings is ±0.002" (0.05 mm) and for spacer couplings is ±0.001" per inch (0.025 per mm) of spacer length.

The maximum allowable angular shaft misalignment is ±0.0005" per inch (0.013 per mm) of coupling diameter.
2.6 Service Liquid Piping Arrangements

The operating principle of a liquid ring pump depends on a continuous supply of clean service liquid, which is normally water. The liquid enters the pump through a connection on the casing and is discharged from the pump along with the gas. There are two basic piping arrangements that can be used for liquid ring pump applications. A once-through method with no recovery of the service liquid and a total recirculation method which re-uses the service liquid.

Both of these arrangements have four basic elements:

1) A supply of service liquid.
2) A means to control flow of service liquid.
3) A means of stopping the flow of service liquid when the pump is off.
4) A means of separating the gas / liquid exhaust mixture.

It is recommended to use a strainer to ensure that foreign matter does not enter the pump with the service liquid supply or make-up source. See Diagrams 1 and 2 for the proper piping arrangement scheme.

CAUTION: COMPLETE ALL PIPING INSTALLATION AND MAKE SURE A SUPPLY OF SERVICE LIQUID AND SHAFT SEAL COOLANT ARE AVAILABLE BEFORE STARTING THE PUMP.
A) Typical Installation of Once Through with No Recovery

The service liquid is piped directly from a supply source to the pump. The liquid is separated from the gas in the separator and discharged to a drain. No recirculation nor recovery takes place. This is the most basic arrangement and can be used when service liquid conservation or contamination is not a concern. A solenoid operated valve provides for flow of the liquid simultaneously with the pump/motor operation. When the motor stops, the valve closes to prevent the pump casing from filling with fluid. The by-pass valve is used to pre-fill the pump at initial start-up only. It also can be used should the solenoid fail. When a manual valve is used, it must be opened immediately after starting the motor and closed immediately before turning the motor off.

![Diagram of Once Through with No Recovery](image)

A–Inlet Check Valve
B–Vacuum Gauge
C–Vacuum Relief Valve
D–Separator
E–By-Pass Valve
F–Strainer
G–Shut-off Valve
H–Regulating Valve
J–Solenoid Valve
K–Compound Gauge
L–Liquid Ring Pump
M–Trap (required if discharge pressure is above atmospheric pressure)

Once Through with No Recovery
Diagram 1
B) Typical Installation of Closed Loop with Total Recovery

This arrangement provides for the total recirculation of the service liquid. A heat exchanger is added to the system to remove the heat of compression, friction, and condensation from the service liquid before it is re-introduced to the pump.

The service liquid level in the separator of a total recovery system should be at or slightly below the centerline of the pump shaft. A provision should be made for a high level overflow. This will prevent starting the pump while it is full of liquid, which will damage the pump or overload the motor.

A–Inlet Check Valve
B–Pressure Gauge
C–Vacuum Relief Valve
D–Level Gauge
E–Separator
F–Service Liquid Cooler
G–Shut-off or Throttling Valve
H–Compound Gauge
J–Liquid Ring Pump
K–Recirculation Pump (recommended)
L–Trap or Loop Seal (required if discharge pressure is above atmospheric pressure)
M–Drain Valve
N–Make-Up Valve

Closed Loop–Total Recovery
Diagram 2

11
C) Draining Before Start-Up

CAUTION : DO NOT START THE PUMP WITH THE CASING FULL OF LIQUID.

A Liquid Ring Pump should not be started with the casing full of liquid. Damage to the impeller or the shaft will result. The normal liquid level should be no higher than the shaft centerline. The pump may be started with a low liquid level as long as a supply of service liquid is available immediately after start-up.

2.7 Shaft Seal Coolant

On the MV and MVP pumps, the service liquid connection is positioned on the pump casing to flush the mechanical seal along with introducing service liquid to the pump. No separate source of shaft seal coolant is required for this design.

2.8 Piping Requirements

A) Suction and Discharge Piping

The suction and discharge connections on the pump are arranged vertically and are marked with arrows on the pump casing. The suction and discharge piping should be the same nominal size as the pump connections. The elevation of the discharge separator above the discharge connection should be limited to an elbow turning horizontally.

If necessary, a discharge leg can be used with a maximum of 12 inches (305 mm) above the pump discharge connection. Too high an elevation in this line will cause excessive backpressure on the pump, overload the motor, and reduce the pump capacity.

Remove the protective coverings from the pump openings just before attaching the piping. Check that all foreign matter such as weld slag, nuts, bolts, rags, and dirt has been cleaned out of the piping before connecting to the pump. The piping must fit easily and without strain on the pump connections and the mating flange bolt holes must be in alignment. The mating flange gaskets must not protrude into the bore of the piping or pump connections. All piping must be supported independently on each side of the pump without transmitting any strain to the pump casing. A temporary suction strainer fitted at the suction inlet is recommended during the first 100 hours of operation.

B) Service Liquid Piping

In a once-through arrangement, the nominal pipe size should be the same size as the service liquid connection. In a total recirculation package with no recirculation pump, use one nominal pipe size larger than the service liquid connection of the pump. Also, use the least number of fittings to minimize the pressure drop. When a recirculation pump is used, the piping should be the same size as the service liquid connection.
2.9 Electrical Requirements

All electrical wiring and installation must comply with local safety codes. After the electrical work is complete, the motor should be jogged to check for proper rotation.

First, turn the pump by hand to see that it rotates freely. The direction of rotation is marked on the pump. With the power off, the motor fan can be used to rotate the MV design.

Second, jog the motor momentarily to check the rotation. It is recommended to use a non-reversing motor controller to prevent the pump from turning in the wrong direction.
Section 3 - Operating Instructions

3.1 Start-up Procedures

Read all instructions before proceeding.

1) Turn the shaft manually to ensure it rotates freely. If the pump is binding or seized, refer to the troubleshooting chart in Section 5. With the power off, the motor fan can be used to rotate the MV design.
2) Fill the pump with service fluid to the shaft centerline, but do not overfill

CAUTION: DO NOT RUN THE PUMP WITHOUT SERVICE LIQUID AND SHAFT SEAL COOLANT.

3) The normal service liquid level should be no higher than the shaft centerline. The pump may be started with a low service liquid level as long as a supply is available immediately after start-up.
4) Open any valves in the suction and discharge lines.
5) Confirm the pump rotation with the arrow on the casing by jogging the motor.
6) Start the motor, ensure service liquid supply, and set regulating valve, when used, for optimum pump performance. Open and adjust the shaft seal cooling liquid valve, when used.

3.2 Service Liquid Requirements

A) Flow Rates

Service liquid flow rates depend on the type of piping arrangement used, the size and operating speed of the pump, and the allowable temperature rise through the pump. Nominal flow rates for standard pumps at normal conditions are given in Table 1.

Service liquid flow rates and the temperature rise are important because of their effect on pump performance. Too little flow will result in loss of capacity. Too much flow will result in excessive horsepower requirements.

<table>
<thead>
<tr>
<th>Service Liquid Flow Rates*</th>
<th>MV or MVP Pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Model</td>
<td>USGPM</td>
</tr>
<tr>
<td>MV12.1.20</td>
<td>1.5</td>
</tr>
<tr>
<td>MV32.1.20</td>
<td>1.7</td>
</tr>
<tr>
<td>MV32.1.25</td>
<td>2.2</td>
</tr>
<tr>
<td>MV32.1.45</td>
<td>2.5</td>
</tr>
<tr>
<td>MV32.1.65</td>
<td>3</td>
</tr>
<tr>
<td>MV40.1.50</td>
<td>4.4</td>
</tr>
<tr>
<td>MV40.1.60</td>
<td>5.5</td>
</tr>
<tr>
<td>MV41.1.100</td>
<td>8.8</td>
</tr>
</tbody>
</table>

* Applies to MV or MVP design. For units in m³/hr, multiply USGPM by 0.227

Table 1
B) Flow Control

If a flow device is not used to measure the service liquid quantity to the pump, a regulating valve and compound gauge in the service liquid line can be used to approximate the flowrate. For pump operating pressures between atmospheric and 400 mmHgA, the reading on the compound gauge should be in the range of 2” HgV to 5 psig (709 mmHgA to 0.35 barg). For operating pressures below 400 mmHgA, the compound gauge reading should be in the range of 15” HgV to 2 psig (379 mmHgA to 0.14 barg). This method is only an approximation of the service liquid quantity. The actual operating conditions will dictate the amount of service liquid required and also the compound gauge reading.

C) Hard Water

If hard water is used as the service liquid, scale deposits caused by the precipitation of minerals will occur. This will vary with the temperature of the water. Scale deposits on the internal surfaces of the pump will cause an increase of the operating horsepower, wear on moving parts, and may cause the pump to seize. If the hardness of the water is excessive, consider using a water softening treatment.

3.3 Cavitation

Cavitation is identified by a characteristic metallic or grinding noise inside the pump. It is caused when the pump suction pressure is too close to the vapor pressure of the service liquid. If the service liquid temperature inside the pump rises such that its vapor pressure closely approaches the suction pressure of the pump, cavitation will occur.

When cavitation takes place, vapor bubbles form and collapse within the liquid ring. This will damage the surfaces of the impeller, side plates, and casing. Cavitation causes damage by tearing away metal particles. The damage may be more severe in a corrosive situation.

Cavitation may be prevented by bleeding air into the pump to raise the suction pressure. Vacuum relief valves can be fitted in the suction piping for this purpose.

If the problem is not caused by a low flow of non-condensable gases, the service liquid temperature should be checked. Ultimately, the vacuum at which the pump can be operated is governed by the vapor pressure of the service liquid inside the pump.

3.4 Shut-Down Procedures

1. Shut off the service liquid and shaft seal coolant supply, and immediately stop the motor.
2. If necessary, close all suction and discharge valves.
3. If necessary, drain the pump to protect it from freezing by removing all drain plugs.
4. Disconnect power from the motor if maintenance is to be performed.
Section 4 - Accessory Items

4.1 Accessories

There are many accessory items associated with Liquid Ring Vacuum Pumps. They can be supplied by Graham and shipped from the factory or can be supplied by others and installed in the field. The particular requirements, mode of operation, and type of control scheme desired dictate the necessity of various items. The following is a list of common accessories.

Inlet Check Valve Used to prevent a back flow of gas into the process when the pump is stopped. Check valves are normally installed in a horizontal line. An elbow can be provided to adapt the vertical pump inlet to accept a horizontal check valve.

Vacuum Relief Valve Used to protect the pump from cavitation and control the pump suction pressure. When the pump capacity exceeds the system’s flow requirements at a pre-determined level, the valve will open and bleed in atmospheric air or process gas.

Flexible Connector Used to compensate for minor misalignment or expansion between the pump connections and the process piping.

Vacuum Gauge Used to indicate vacuum at the pump inlet. Normally mounted directly ahead of the pump suction.

Shut-off Valve Used to manually stop the flow of service liquid to the pump.

Strainer Used to filter out solid particles that will damage the pump.

Flow Regulator Used to control the service liquid flow rate to the pump. A manual valve, a fixed orifice, or a flexible element orifice may be used depending on the application.

Compound Gauge Used to indicate pressure in the service liquid piping.

Discharge Separator Used to separate the service liquid from the discharged gas as it comes out of the pump. The liquid can be piped to a drain or recovered for reuse.

Solenoid Valve Used to automatically stop or start the flow of service liquid to the pump. Normally interlocked to the pump motor.

By-pass Valve Used to initially fill the pump with service liquid or for bypass in case the solenoid coil fails.
Graham Corporation

Recirculation Pump: Used to circulate the service liquid recovered from the discharge separator in some total recovery systems.

Heat Exchanger: Used to remove heat from the recirculated service liquid.

Atmospheric Air Ejector: Used to provide a suction pressure lower than the pump is capable of when operating alone. It may be added to a pump to provide an inlet pressure as low as 10 mm HgA. The operation of the air ejector is similar to that of a steam ejector. Atmospheric air or recycled gas from the discharge separator is used as the motive force for compressing the process gas from the system design pressure up to the inlet pressure of the pump. To enhance pumping capacity at a higher suction pressure, an optional motive air shut-off valve or by-pass valve can be added. (See Figure 2)

![Diagram of a Typical Atmospheric Air Ejector](image)

Figure 2
Section 5 - Maintenance

5.1 Performance

Optimum performance and long service life are dependent upon good maintenance procedures and periodic inspections. When preparing to dismantle a pump, make provisions for the safe handling of heavy parts.

5.2 MV and MVP Pump Estimated Weights (lbs.)*

<table>
<thead>
<tr>
<th>MV Model</th>
<th>Dry</th>
<th>MVP Model</th>
<th>Dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV12.1.20</td>
<td>24</td>
<td>MVP12.1.20</td>
<td>18</td>
</tr>
<tr>
<td>MV32.1.20</td>
<td>51</td>
<td>MVP32.1.20</td>
<td>35</td>
</tr>
<tr>
<td>MV32.1.25</td>
<td>62</td>
<td>MVP32.1.25</td>
<td>37</td>
</tr>
<tr>
<td>MV32.1.45</td>
<td>70</td>
<td>MVP32.1.45</td>
<td>44</td>
</tr>
<tr>
<td>MV32.1.65</td>
<td>86</td>
<td>MVP32.1.65</td>
<td>53</td>
</tr>
<tr>
<td>MV40.1.50</td>
<td>132</td>
<td>MVP40.1.50</td>
<td>95</td>
</tr>
<tr>
<td>MV40.1.60</td>
<td>158</td>
<td>MVP40.1.60</td>
<td>100</td>
</tr>
<tr>
<td>MV41.1.100</td>
<td>354</td>
<td>MVP41.1.100</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* For units in kg, multiply lbs. by 0.454

Table 2

5.3 Shaft Bearings

The MV and MVP pumps use sealed-for-life bearings that are not regreaseable.

The standard bearings are rated for an L10h life of 80,000 hours. The temperature of the bearings should not exceed 140°F (60°C). Overheating may be due to misalignment of the shafts or a bad bearing.

5.4 Mechanical Seals

The MV and MVP pumps are fitted with a single acting mechanical shaft seal. It should be replaced when worn, scratched, or cracked, or when the rotating segment no longer grips the shaft.

When replacing the mechanical seal, clean the shaft thoroughly. The seal faces must be protected during installation from particles which may scratch the surfaces.

CAUTION : DO NOT RUN THE PUMP WITHOUT SERVICE LIQUID AND SHAFT SEAL COOLANT.
5.5 Storage

If a pump is to be out of service, it should be protected internally from rusting by using a rust inhibitor. The pump should be drained completely by removing all lower plugs. Install the plugs and fill with Oakite HPO (or equal) preservative solution. Rotate the pump manually to circulate the solution. With the power off, the motor fan can be used to rotate the MV design. Drain the pump to the shaft centerline. This procedure may be disregarded for pumps made of stainless steel or other corrosion resistant materials.

Seal any openings to prevent foreign material from entering the pump.

The pump shaft should be rotated each week to distribute the preservative and to prevent flat spots on the bearings. Document the time, date, and by whom this procedure was performed. With the power off, the motor fan can be used to rotate the MV design.

The pump should be checked to see that the preservative is maintained. This will protect the pump for up to twelve months.

Pumps stored at low temperatures may need to be protected from freezing either by draining completely or by using an anti-freeze solution.

5.6 Removal from storage

The pump should be drained and flushed if necessary to remove the preservative solution. Refer to paragraph 3.1 of this manual for the recommended start-up procedure.

CAUTION: THE OAKITE HPO PRESERVATIVE SOLUTION IS PETROLEUM BASED AND MUST BE DISPOSED OF IN ACCORDANCE WITH ALL LOCAL, STATE, AND FEDERAL REGULATIONS.

An MSDS form is included in the back of this manual.
5.7 Troubleshooting Chart

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Capacity</td>
<td>• Speed too low</td>
<td>• Check power supply and transmission</td>
</tr>
<tr>
<td></td>
<td>• Leak in suction line</td>
<td>• Repair</td>
</tr>
<tr>
<td></td>
<td>• Service liquid temperature too high</td>
<td>• Check coolant flow & heat exchanger</td>
</tr>
<tr>
<td></td>
<td>• Insufficient or excess service liquid</td>
<td>• Provide correct flow rate</td>
</tr>
<tr>
<td></td>
<td>• Excessive back pressure</td>
<td>• Eliminate cause of back pressure</td>
</tr>
<tr>
<td>Excessive Noise</td>
<td>• Excessive or insufficient service liquid</td>
<td>• Adjust flow rate</td>
</tr>
<tr>
<td></td>
<td>• Shaft misalignment</td>
<td>• Realign shafts</td>
</tr>
<tr>
<td></td>
<td>• Defective bearing</td>
<td>• Replace bearing</td>
</tr>
<tr>
<td></td>
<td>• Cavitation</td>
<td>• Adjust vacuum relief valve</td>
</tr>
<tr>
<td></td>
<td>• Back pressure</td>
<td>• Eliminate cause of back pressure</td>
</tr>
<tr>
<td>High Power Consumption</td>
<td>• Excessive service liquid</td>
<td>• Reduce flow rate</td>
</tr>
<tr>
<td></td>
<td>• Shaft misalignment</td>
<td>• Realign shafts</td>
</tr>
<tr>
<td></td>
<td>• Excessive back pressure</td>
<td>• Eliminate cause of back pressure</td>
</tr>
<tr>
<td></td>
<td>• Defective bearing</td>
<td>• Replace bearing</td>
</tr>
<tr>
<td></td>
<td>• Improperly mounted pump</td>
<td>• Make sure surface is level and all feet touch the surface, shim if necessary.</td>
</tr>
<tr>
<td></td>
<td>• High temperature process load</td>
<td>• Check conditions upstream of pump</td>
</tr>
<tr>
<td>Overheating</td>
<td>• Service liquid temperature too high</td>
<td>• Check coolant flow & heat exchanger</td>
</tr>
<tr>
<td></td>
<td>• Insufficient service liquid</td>
<td>• Provide correct flow rate</td>
</tr>
<tr>
<td></td>
<td>• Shaft misalignment</td>
<td>• Realign shafts</td>
</tr>
<tr>
<td></td>
<td>• Defective bearing</td>
<td>• Replace bearing</td>
</tr>
<tr>
<td>Vibration</td>
<td>• Shaft misaligned</td>
<td>• Realign shafts</td>
</tr>
<tr>
<td></td>
<td>• Pump or baseplate not properly anchored</td>
<td>• Anchor</td>
</tr>
<tr>
<td></td>
<td>• Defective bearing</td>
<td>• Replace bearing</td>
</tr>
<tr>
<td></td>
<td>• Improperly mounted pump</td>
<td>• Make sure surface is level and all feet touch the surface, shim if necessary.</td>
</tr>
<tr>
<td></td>
<td>• Cavitation</td>
<td>• Adjust vacuum relief valve</td>
</tr>
<tr>
<td></td>
<td>• Back pressure</td>
<td>• Eliminate cause of back pressure</td>
</tr>
<tr>
<td></td>
<td>• Excessive service liquid</td>
<td>• Provide correct flow rate</td>
</tr>
<tr>
<td>Abnormal Bearing Wear or Failure</td>
<td>• Shaft misalignment</td>
<td>• Realign shafts</td>
</tr>
<tr>
<td></td>
<td>• Piping load on pump connections</td>
<td>• Support connecting pipe work</td>
</tr>
<tr>
<td></td>
<td>• Mechanical seal leakage</td>
<td>• Replace seal</td>
</tr>
<tr>
<td>Shaft Will Not Turn or Partially Seizes</td>
<td>• Scale build-up</td>
<td>• Descale pump</td>
</tr>
<tr>
<td></td>
<td>• Foreign object in pump</td>
<td>• Remove foreign object</td>
</tr>
<tr>
<td></td>
<td>• Piping load on pump connections</td>
<td>• Support connecting pipe work</td>
</tr>
<tr>
<td></td>
<td>• Improperly mounted pump</td>
<td>• Make sure surface is level and all feet touch the surface, shim if necessary.</td>
</tr>
<tr>
<td></td>
<td>• Soft Foot</td>
<td>• Correct pump / motor mounting</td>
</tr>
</tbody>
</table>

Table 3
Section 6 - Disassembly And Reassembly Procedures

6.1 General

Complete disassembly of the pump is seldom necessary and it may only need to be disassembled to the point required to repair or service it. Specific instructions are included with the documentation sent with your liquid ring pump. The cross-section drawing and parts list should be referred to when servicing the pump and when ordering spare parts.

Before any servicing takes place, it is recommended that a set of gaskets, bearings, and mechanical seals be on hand as spare parts. The stocking of additional items beyond these basic wearing parts is dependent upon the type of application, compatibility of pump materials with the process gas and service liquid, degree of corrosion and erosion to which the pump is subjected, importance of pump reliability to the process, etc.

When ordering spare parts, be sure to identify the pump size, serial number, part name and reference number, and if available, original purchase order number, Graham job number, or a drawing number.

6.2 Impeller End Clearances

Refer to Table 4 for the impeller end clearances. These values are for each side of the impeller. These clearances are extremely important for optimum pump performance. Also refer to the dismantling and reassembly procedures that were provided with the documentation sent with your pump.

<table>
<thead>
<tr>
<th>Pump Frame Size</th>
<th>Cast Iron Construction</th>
<th>Stain. Stl. & Titanium Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV12.120</td>
<td>0.004" - 0.006"</td>
<td>0.006" - 0.009"</td>
</tr>
<tr>
<td>MV32.120</td>
<td>0.004" - 0.006"</td>
<td>0.006" - 0.009"</td>
</tr>
<tr>
<td>MV32.125</td>
<td>0.004" - 0.006"</td>
<td>0.006" - 0.009"</td>
</tr>
<tr>
<td>MV32.145</td>
<td>0.004" - 0.006"</td>
<td>0.006" - 0.009"</td>
</tr>
<tr>
<td>MV32.165</td>
<td>0.004" - 0.006"</td>
<td>0.006" - 0.009"</td>
</tr>
<tr>
<td>MV40.150</td>
<td>0.004" - 0.006"</td>
<td>0.006" - 0.009"</td>
</tr>
<tr>
<td>MV40.160</td>
<td>0.004" - 0.006"</td>
<td>0.006" - 0.009"</td>
</tr>
<tr>
<td>MV41.1100</td>
<td>0.006" - 0.008"</td>
<td>0.009" - 0.012"</td>
</tr>
</tbody>
</table>

* For units in mm, multiply inches by 25.4
A) Gasketed Pumps

The gaskets between the impeller casing and the sideplate determine the impeller end clearances. Check and record the thickness and quantity of these gaskets at each joint when dismantling. The gaskets may be held in place with grease during re-assembly. The gasket thicknesses used on 316SS and high alloy pumps are 0.015" to 0.018" (0.38 to 0.46 mm). Refer to Table 4 for the correct impeller end clearances.

Do not use joint sealing compound to replace a gasket as the clearances in the pump will be affected.

B) Non-Gasketed Pumps

Some of the MV and MVP pumps do not require gaskets, but use a joint sealing compound between the impeller casing and the sideplate. They are machined to accommodate the same impeller end clearances as a gasketed pump. Refer to Table 4 for the correct impeller end clearances.

6.3 Tie Rod Torque Values

Table 5 includes torque values for re-assembling the pumps.

MV or MVP Design

<table>
<thead>
<tr>
<th>Pump Frame Size</th>
<th>Tie Rod Torque *</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV12.1.20</td>
<td>30 ft.-lb</td>
</tr>
<tr>
<td>MV32.1.20</td>
<td>30 ft.-lb</td>
</tr>
<tr>
<td>MV32.1.25</td>
<td>30 ft.-lb</td>
</tr>
<tr>
<td>MV32.1.45</td>
<td>30 ft.-lb</td>
</tr>
<tr>
<td>MV32.1.65</td>
<td>30 ft.-lb</td>
</tr>
<tr>
<td>MV40.1.50</td>
<td>40 ft.-lb</td>
</tr>
<tr>
<td>MV40.1.60</td>
<td>40 ft.-lb</td>
</tr>
<tr>
<td>MV41.1.100</td>
<td>40 ft.-lb</td>
</tr>
</tbody>
</table>

* For units in N-m, multiply ft.-lb by 1.355
6.4 Bearing Data

The correct bearing fit class needs to be used for proper operation. **Do not use a C3 fit as it is too loose and will cause damage to the pump.** Table 6 provides correct bearing data for the pumps. All bearing fits are Normal or Class 0.

<table>
<thead>
<tr>
<th>Pump Frame Size</th>
<th>Close-Coupled Motor HP (60 Hz)</th>
<th>SKF Bearing Number DE</th>
<th>Bearing Journal Diameter</th>
<th>SKF Bearing Number NDE</th>
<th>Bearing Journal Diameter</th>
<th>Type (All Bearings are Normal Fit - AFBMA 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV12.1.20</td>
<td>0.75</td>
<td>6304-2RS</td>
<td>20 mm</td>
<td>6203-2RS</td>
<td>17 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
<tr>
<td>MV32.1.20</td>
<td>2.0</td>
<td>6305-2RS</td>
<td>25 mm</td>
<td>6204-2RS</td>
<td>20 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
<tr>
<td>MV32.1.25</td>
<td>2.5</td>
<td>6305-2RS</td>
<td>25 mm</td>
<td>6205-2RS</td>
<td>25 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
<tr>
<td>MV32.1.45</td>
<td>4.0</td>
<td>6305-2RS</td>
<td>25 mm</td>
<td>6206-2RS</td>
<td>30 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
<tr>
<td>MV32.1.65</td>
<td>5.5</td>
<td>6306-2RS</td>
<td>30 mm</td>
<td>6206-2RS</td>
<td>30 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
<tr>
<td>MV40.1.50</td>
<td>7.5</td>
<td>6307-2RS</td>
<td>35 mm</td>
<td>6306-2RS</td>
<td>30 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
<tr>
<td>MV40.1.60</td>
<td>7.5</td>
<td>6307-2RS</td>
<td>35 mm</td>
<td>6306-2RS</td>
<td>30 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
<tr>
<td>MV41.1.100</td>
<td>N/A</td>
<td>3209 - Dbl. row, ang. contact</td>
<td>45 mm</td>
<td>NU209EC - singl. row, cylind. roller</td>
<td>45 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
<tr>
<td>MVP12.1.20</td>
<td>N/A</td>
<td>6203-2Z</td>
<td>17 mm</td>
<td>6204-2Z</td>
<td>20 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
<tr>
<td>MVP32.1.20</td>
<td>N/A</td>
<td>6306-2Z</td>
<td>30 mm</td>
<td>6306-2Z</td>
<td>30 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
<tr>
<td>MVP32.1.25</td>
<td>N/A</td>
<td>6306-2Z</td>
<td>30 mm</td>
<td>6306-2Z</td>
<td>30 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
<tr>
<td>MVP32.1.45</td>
<td>N/A</td>
<td>6306-2Z</td>
<td>30 mm</td>
<td>6306-2Z</td>
<td>30 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
<tr>
<td>MVP32.1.65</td>
<td>N/A</td>
<td>6306-2Z</td>
<td>30 mm</td>
<td>6306-2Z</td>
<td>30 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
<tr>
<td>MVP40.1.50</td>
<td>N/A</td>
<td>6208-2RS</td>
<td>40 mm</td>
<td>6208-2RS</td>
<td>40 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
<tr>
<td>MVP40.1.60</td>
<td>N/A</td>
<td>6208-2RS</td>
<td>40 mm</td>
<td>6208-2RS</td>
<td>40 mm</td>
<td>Ball Bearing, Single Row, Deep Groove, Double Seals, Sealed For Life (SFL)</td>
</tr>
</tbody>
</table>

Table 6
Section 7 - Warranty

THE FOLLOWING IS IN LIEU OF ALL WARRANTIES OF GRAHAM EXPRESSED OR IMPLIED AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND/OR ANY OTHER OBLIGATION ON THE PART OF GRAHAM ARE HEREBY EXCLUDED:

Graham, except as otherwise provided, warrants goods of its own manufacture against faulty workmanship or the use of defective materials, under normal use and service, and that such goods will conform to mutually agreed upon written specifications, drawings, and is guaranteed to meet specified performance requirements, for a period of twelve (12) months from date of shipment of the goods from the factory.

Graham assumes no responsibility for deterioration of the equipment due to corrosion, erosion, or flow induced tube vibration, or for fouling, maintenance problems or any other causes not specifically covered under the foregoing warranty. The sole remedy of Buyer with respect to any part not conforming to any warranty of Graham shall be the repair or, at Graham’s option, replacement of any defective part at the point of manufacture, Buyer assuming all costs of removal, shipping, and reinstallation, provided that immediate written notice of the defect has been given to Graham, and Graham shall not be liable for any other expenses incurred because of failure of any part to meet Graham’s warranty, nor for any special, indirect or consequential damages. Material returned to Graham’s factory without its written consent will not be accepted. No back charges will be honored without Graham’s advance approval of the work to be performed. Graham’s liability on any claim of any kind, including negligence, for any loss or damage arising out of, connected with, or resulting from this transaction, or the design, manufacture, sale, delivery, resale, installation, technical direction of installation, inspection, repair, operation, or use of any equipment covered by or furnished hereunder shall in no case exceed the price paid by Buyer for the equipment. Graham also disclaims all liability, whether in contract, tort, warranty, or otherwise, to any party other than the Buyer.

In the event the pumps are altered or repaired by any person or entity other than Graham, without written approval by Graham, all warranties are void. Bearings and shaft seals are warranted only to the extent of, and pursuant to, the original manufacturer’s warranty.
Appendix A

MATERIAL SAFETY DATA SHEET

PRODUCT CODE: 4405
OAKITE HPO
200-238-001

INMS 221H

SECTION I - PRODUCT IDENTIFICATION

TRADE NAME: OAKITE HPO
CHEMICAL NAME: NA; Mixture.
AND SYNONYMS:
MANUFACTURER'S NAME: OAKITE PRODUCTS INC. (908) 464-6900 (8am-5pm)
AND TELEPHONE NO.:
ADDRESS: A Member of The CHEMTAILL Group
50 Valley Road Berkeley Heights NJ 07922
DATE OF PREPARATION: 05-21-98

SECTION II - HAZARDOUS INGREDIENTS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>CAS NO.</th>
<th>% by wt</th>
<th>ACGIH TLV (TWA)</th>
<th>OSHA PEL (TWA)</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severely hydrotreated naphthenic</td>
<td>0064742525</td>
<td>60-70</td>
<td>5</td>
<td>5</td>
<td>mg/m³</td>
</tr>
<tr>
<td>petroleum distillate - (as oil</td>
<td>0008008206</td>
<td>15-25</td>
<td>NE</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td>mist, mineral)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerosene</td>
<td>0061790485</td>
<td>1-10</td>
<td>0.5</td>
<td>0.5</td>
<td>mg/m³</td>
</tr>
<tr>
<td>Barium sulfonate (+) (as Ba, soluble compounds)</td>
<td>0000111762</td>
<td>1-5</td>
<td>25</td>
<td>50</td>
<td>ppm</td>
</tr>
<tr>
<td>2-Butoxyethanol (+) - (skin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-hazardous ingredients</td>
<td>Bal.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All components of this material are on the US TSCA Inventario.

(+) This product contains ingredient(s) identified in Section II with (+) which are subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR 372.

CARCINOGENICITY: No substance in this product is listed by IARC, NTP, or regulated by OSHA as a carcinogen.

Graham Corporation

OAKITE Products Inc. warrants that the product or products described herein will comply with its published specifications. The products supplied by Oakite and information related to them are intended for use by buyers possessing necessary industry and skill knowledge. Buyers should undertake sufficient verification and testing to determine the suitability of the Oakite materials for their own particular purpose.

Graham Corporation does not warrant any recommendations and information for the use of such products. GRIITE DISCLANTS ALL OTHER WARRANTIES INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE IN CONNECTION WITH THE USE OF ITS PRODUCTS.

NA - Not Applicable
NE - Not Established

-1-
Appendix A

MATERIAL SAFETY DATA SHEET

SECTION III - PHYSICAL DATA

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOILING POINT (°F)</td>
<td>NE</td>
</tr>
<tr>
<td>VAPOR PRESSURE (mm Hg)</td>
<td>NE</td>
</tr>
<tr>
<td>VAPOR DENSITY (Air=1)</td>
<td>NE</td>
</tr>
<tr>
<td>SOLUBILITY IN WATER</td>
<td>Insoluble</td>
</tr>
<tr>
<td>EVAPORATION RATE (Water=1)</td>
<td><1</td>
</tr>
<tr>
<td>APPEARANCE AND ODOR</td>
<td>Reddish-brown liquid; spicy; pungent odor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC GRAVITY (H2O=1)</td>
<td>0.890</td>
</tr>
<tr>
<td>Bulk Density</td>
<td>7.4 lb</td>
</tr>
<tr>
<td>PERCENT VOLATILE</td>
<td></td>
</tr>
<tr>
<td>BY WEIGHT (%) Excludes H2O</td>
<td>15-25</td>
</tr>
<tr>
<td>PH</td>
<td>NA</td>
</tr>
<tr>
<td>PH (concentrate)</td>
<td>NA</td>
</tr>
</tbody>
</table>

SECTION IV - FIRE AND EXPLOSION HAZARD DATA

FLASH POINT (Method Used): 170 °F (TCC)
FLAMMABLE LIMITS: LEL: NE UEL: NE
EXTINGUISHING MEDIA: Carbon dioxide, dry chemical, or foam.
SPECIAL FIRE FIGHTING PROCEDURES: Wear Self-Contained Breathing Appar. (SCBA).
UNUSUAL FIRE AND EXPLOSION HAZARDS: See Section VII. (WHMIS)
See Section VI. (U.S.)

SECTION V - HEALTH HAZARD INFORMATION

ROUTE(S) OF ENTRY: INHALATION: SKIN: INGESTION:
× x

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: None known.
SYMPTOMS/EFFECTS OF OVEREXPOSURE:
Inhalation of mist may cause respiratory irritation. High vapor concentrations may produce headache, dizziness and nausea. Product containing 2-butoxyethanol which has shown to cause liver and kidney damage and hemolytic anemia in test animals. Direct contact with eyes causes irritation. Chronic exposure may lead to skin irritation, oil acne, and dermatitis.

FIRST AID

EYES: Immediately flush eyes with plenty of water for at least 15 while holding eyelids open. If irritation persists get medical attention.

NA - Not Applicable
NE - Not Established
Appendix A

MATERIAL SAFETY DATA SHEET

SKIN: Remove contaminated clothing. Wash thoroughly with soap and water. If irritation persists, get medical attention.

INGESTION: Contact local poison control center or physician IMMEDIATELY!

INHALATION: Move victim to fresh air. Treat symptomatically.

SECTION VI - REACTIVITY DATA

STABILITY: NORMALLY STABLE
Avoid extreme heat, open flame.
INCOMPATIBLE MATERIALS: Acids, Strong oxidizers.
HAZARDOUS DECOMPOSITION PRODUCTS: Carbon monoxide, Carbon dioxide, Sulfur dioxide.

SECTION VII - SPILL OR LEAK PROCEDURES

PROCEDURES: Wear personal protective equipment (See Section VIII).
Ventilate area. Remove all heat and ignition sources. Clean up with noncombustible absorbent material.

WASTE DISPOSAL METHOD: Dispose of in accordance with Local State and Federal regulations.

SECTION VIII - SPECIAL PROTECTION INFORMATION

RESPIRATORY: For symptoms of overexposure, wear a NIOSH-approved organic vapor respirator with a dust and mist pre-filter.

EYEWEAR: Wear chemical safety goggles.

CLOTHING/GLOVES: Wear neoprene or other chemical-resistant gloves and clothing as needed to prevent skin contact.

VENTILATION: Local exhaust may be necessary for some handling/use conditions. Specific needs should be addressed by supervisory or health/safety personnel.

SECTION IX - SPECIAL PRECAUTIONS

NA - Not Applicable
NK - Not Established
Appendix A

MATERIAL SAFETY DATA SHEET

COMBUSTIBLE. Keep away from heat, sparks, open flame. Store in closed contai
in cool well-ventilated area.

APPROVAL NAME Mgr. Health & Environmental Dept. 05/21/199
TITLE DATE OF PRINT

NA - Not Applicable

NK - Not Established
RETURN MATERIAL AUTHORIZATION FORM

TO: Pump Service Department Date: _________________
FROM: ______________________

RMA Number: ___________________

This form must be filled out completely before any work will be started on the equipment being returned. This is to ensure the safety of all Graham employees who may come in contact with this equipment.

MSDS (Material Safety Data Sheet) must be included for all material handled by the equipment. Work on the equipment will be held pending receipt of the MSDS.

The equipment must be cleaned prior to shipping back to Graham. Equipment returned in an unsatisfactory condition will be returned to the sender for cleaning.

Customer Data

Customer: ______________________ Contact Person: ______________________
Mailing Address: ________________ Phone Number: ______________________
 ________________ Fax Number: ______________________

Graham Equipment Information

Graham Serial Number: ________________
Equipment Being Returned: ______________________
Reason for Return: ______________________
Material Handled by Equipment: ______________________

Send equipment and MSDS sheets to the address above, Attn.: Pump Service Dept.

This form is to be filled out by Graham (Batavia) personnel only. RMA forms filled out by agents and customers will not be accepted!